If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+21n-6930=0
a = 1; b = 21; c = -6930;
Δ = b2-4ac
Δ = 212-4·1·(-6930)
Δ = 28161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28161}=\sqrt{9*3129}=\sqrt{9}*\sqrt{3129}=3\sqrt{3129}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-3\sqrt{3129}}{2*1}=\frac{-21-3\sqrt{3129}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+3\sqrt{3129}}{2*1}=\frac{-21+3\sqrt{3129}}{2} $
| -19+6x=-19+6x | | 2(x+4)=5(x+4 | | 3y=40-5 | | 4+3(x-7)=9-(x+6) | | 6.5f-4-5f=-29.4 | | 14x2-6=6x2+14 | | F2=3n,30 | | 6(4)x+1=78 | | 3(p-5)=2(p+5) | | 4(n-7)+2n=9+n | | 3+5=1+8n+2 | | 3p+18=39 | | -4+x/2=x/3-20 | | 3/9=p-2/p-10 | | 12-9x=57-3x | | 25=-5+7r | | 12+9x=57+3x | | (x-23)+(2x+29)=180 | | 5x+2x/24=180 | | -11.2=z+11.6 | | X²+30x+104=0 | | 4a+1-a=19* | | 2x2+23x–25=0 | | F1=5n,60 | | 58-77+88+263=x+164 | | 6(2g+1.5)=3(g+2) | | 5w-10=-3.5w-10 | | 6x–2=10 | | 5x-3=4x-8. | | -6p^2-5p+1.5=0 | | 2.4x-9=0.75x+1.2 | | 0.5x+x-3=0.25x+7 |